ToF-SIMS analysis of osteoblast-like cells and their mineralized extracellular matrix on strontium enriched bone cements.

نویسندگان

  • Julia Kokesch-Himmelreich
  • Matthias Schumacher
  • Marcus Rohnke
  • Michael Gelinsky
  • Jürgen Janek
چکیده

Commonly used implants for therapeutic approaches of non-systemically impaired bone do not sufficiently support the healing process of osteoporotic bone. Since strontium (II) has been proven as an effective anti-osteoporotic drug new types of strontium enriched calcium phosphate bone cements were developed. As osteoporosis is characterized by an imbalance of osteoblast and osteoclast activity the influence of this newly generated strontium enriched biomaterials on the cellular behavior of osteoblast-like cells was investigated by time of flight secondary ion mass spectrometry (ToF-SIMS). ToF-SIMS is used to analyze whether strontium is incorporated in the mineralized extracellular matrix (mECM) and whether there is strontium uptake by osteogenically differentiated human mesenchymal stem cells (hMSCs). Therefore hMSCs were cultured in osteogenic differentiation medium for 21 days on two different strontium enriched bone cements (S100 and A10) and for reference also on the pure calcium phosphate cement (CPC) and on a silicon wafer. The distribution of strontium in the osteoblast-like cells and within their mineralized extracellular matrix was analyzed. A higher intensity of the strontium signal could be detected in the region of the mECM, synthesized by cells cultivated on the Sr- substituted bone cement (S100) in comparison to the reference groups. The osteoblast-like cells used the released strontium from the biomaterial to synthesize their mECM. Apart from that a uniform strontium distribution was measured within all investigated cells. However, different amounts of strontium were found in cells cultured on different biomaterials and substrates. Compared to the negative controls the strontium content in the cells on the strontium enriched biomaterials was much higher. A higher concentration of strontium inside the cells means that more strontium can take part in signaling pathways. As strontium is known for its beneficial effects on osteoblasts by promoting osteoblastic cell replication and differentiation, and reducing apoptosis, the newly developed strontium enriched calcium phosphate cements are promising implant materials for osteoporotic bone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Mineralized Nodule Formation in Rat Bone Marrow Stromal Cell Cultures by Silk Fibroin

Background: Silk fibroin is a suitable protein for osteogenesis by inducing markers of bone formation in the cultures of osteoblasts, so we examined the ability of this protein to induce mineralized nodules in the rat bone marrow stromal cell cultures. Methods: Bone marrow stromal cells obtained from 4 to 6 weeks old Spruge-Dawely male rats were grown in primary culture for seven days and then ...

متن کامل

Tenascin C affects mineralization of SaOS2 osteoblast-like cells through matrix vesicles.

Tenascin C (TNC) is an extracellular matrix glycoprotein involved in osteogenesis and bone mineralization. In a previous study, we identified TNC protein located in the matrix vesicles (MVs) of osteoblasts. MVs are determinant in the mineralization formation. Therefore, we hypothesize whether TNC can modulate osteoblast mineralization via MVs. In this study, we demonstrated that the expression ...

متن کامل

Out of the liquid-into the vacuum.

Dear Reader, The first Volume of Biointerphases in March 2006 had an editorial by Greg Exarhos, then chair of the Publication committee of the American Vacuum Society (AVS), and me, entitled: A surface scientist’s perspective on Biointerphases, or “Out of the Vacuum, into the Liquid” (the latter title I used in many talks and presentations). There we summarized the reason why we were starting a...

متن کامل

Proteomic analysis of human osteoblastic cells: relevant proteins and functional categories for differentiation.

Osteoblasts are the bone forming cells, capable of secreting an extracellular matrix with mineralization potential. The exact mechanism by which osteoblasts differentiate and form a mineralized extracellular matrix is presently not fully understood. To increase our knowledge about this process, we conducted proteomics analysis in human immortalized preosteoblasts (SV-HFO) able to differentiate ...

متن کامل

Parathyroid hormone [PTH(1-34)] and parathyroid hormone-related protein [PTHrP(1-34)] promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation of osteoblast-like cells.

The effects of parathyroid hormone/parathyroid hormone-related protein (PTH/PTHrP) on late events in chondrocyte differentiation were investigated by a dual in vitro model where conditions of suspension versus adhesion culturing are permissive either for apoptosis or for the further differentiation of hypertrophic chondrocytes to osteoblast- like cells. Chick embryo hypertrophic chondrocytes ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biointerphases

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2013